High School Science Virtual Learning

College Chemistry Solutions Virtual Lab May 6, 2020

High School College Chemistry Lesson: May 6, 2020

Objective/Learning Target:
Students will complete lab activities to learn about solutions.

Let's Get Started:

1. Give at least two properties of water.
2. What is the definition of solute and solvent?

Let's Get Started: Answer Key

1. Polar covalent molecule, has a high surface tension, liquid at room temperature, freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$, and when solid has a larger volume then when in its liquid form.
2. Solute = substance that is dissolved into the solvent Solvent = substance that does the dissolving

Lesson Activity:

- Just like the lessons from earlier this week, this activity will be split between two days.
- Today you will watch the lab video and complete the lab worksheet. There are some review concepts, so there are some additional notes added after the lab.
- Tomorrow you will check your answers and watch a deeper explanation of the lab.

Lesson Activity:

Directions

- Watch this video.
- Answer the questions on your lab worksheet.
- The data for the lab worksheet can be found here.
- What is a solution?
- in chemistry, a solution is any compound/substance dissolved in water
- Why is water so important?
- it is considered a universal solvent, because it can dissolve several compounds (ionic and polar covalent)

Types of Mixtures

- Homogeneous Solution is a solid, liquid, or gaseous mixture that has the same proportions of its components throughout any given sample. Considered to have one phase that can be seen.
- Example - salt water
- Heterogeneous Solution has components in which proportions vary throughout the sample. Considered to have two or more phases that can be seen.
- Example - sand and water

NOTES:

- Properties of Water:
- Capable of hydrogen bonding causing it to have strong surface tension
- Liquid at room temperature
- Use this video to help you understand water: Amoeba Sisters
- "Like Dissolves Like"
- Common phrase used to determine what can or cannot dissolve in any substance.
- Since water is a polar molecule - only substances that are also polar like salt and sugar can dissolve in it.
- The reverse is also the same - oil which is not polar cannot mix with water.

NOTES:

Measuring Solutions

- Concentration - way of describing amount of solute to solvent.
- Molarity - number of moles of solute dissolved in one liter of solution.

$$
\text { Molarity }(M)=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

- Diluting a solution reduces the number of moles of solute per unit volume, but the total number of moles of solute in solution does not change.

$$
\text { Moles of solute }=M_{1} \times V_{1}=M_{2} \times V_{2}
$$

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

1. 1.0 moles of potassium fluoride is dissolved to make 0.10 L of solution.
2. 1.0 g of potassium fluoride is dissolved to make 0.10 L of solution.
3. 1.0 g of potassium fluoride is dissolved to make 0.10 mL of solution.
4. 952 g of ammonium carbonate are dissolved to make 1750 mL of solution.
5. 9.82 g of lead (IV) nitrate are dissolved to make 465 mL of solution.

Answer Key:

$$
\begin{aligned}
& \text { 1. } \frac{1.0 \mathrm{~mole} \mathrm{KF}}{0.10 \mathrm{~L} \text { soln }}=10 . \mathrm{M} \\
& \text { 2. } \frac{1.0 \mathrm{~g} \mathrm{KF} \times \frac{1 \mathrm{~mole} \mathrm{KF}}{58 \mathrm{~g} \mathrm{KF}}=0.0172 \mathrm{~mol} \mathrm{KF}}{} \\
& \frac{\mathbf{0 . 0 1 7 2 \mathrm { mol } \mathrm { KF }}}{\mathbf{0 . 1 0 \mathrm { L } \mathrm { soln }}}=0.17 \mathrm{M}
\end{aligned}
$$

3. $1.0 \mathrm{~g} \mathrm{KF} \times \frac{1 \mathrm{~mole} \mathrm{KF}}{58 \mathrm{~g} \mathrm{KF}}=0.0172 \mathrm{~mol} \mathrm{KF}$
$0.0172 \mathrm{~mol} \mathrm{KE}=170 \mathrm{M}$ $1 \times 10^{-4} \mathrm{~L}$ soln
4. $\left.952 \mathrm{~g} \mathrm{(} \mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times 1 \mathrm{~mole}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=9.92 \mathrm{~mole}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ $\mathbf{9 6 ~ g (N H})_{2} \mathrm{CO}_{3}$
2.92 mole $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=5.67 \mathrm{M}$
1.75 L soln
5. $\quad 9.82 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4} \times \frac{1 \mathrm{~mole} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4-}}{455.2 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4}}=0.0216$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4}$ 0.0216 moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4}=0.0465 \mathrm{M}$ 0.0465 L soln
